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Concepts
● Component abstraction
● Composition of components

A B

composition
interaction medium

communication channel

component

● Two different kinds of languages
– for the composition (coordination)
– for the components (host)



  

Concepts (2)

● Coordination language
– syntax : block oriented 
– semantics : interaction semantics

● Host language
– programming languages
– domain specific languages

● What can I do with such a model ?
– generate an executable code

● “Simulation” or actual code production



  

Concepts (3)

● What are the advantages ?
– Create programming abstractions more 

natural to the application domain
● more productivity
● better understanding
● better optimization opportunities

– Better semantics (no non-determinism, or a 
controlled one)

– Possibility to target to any desired platform, 
hiding the details from the programmer



  

Applications

● Any platform / architecture that has a form 
of concurrency
– there are tons....

● Examples
– interaction with “external” elements
– multiple entities on the same computation 

resource
– multiple computational resources



  

Related work

● Is this idea original ? No
● Labview - National Instruments



  

Related Work (2)

● Simulink - Mathworks



  

Related Work (3)

● Scade – Esterel Technologies



  

Related Work (4)
● ML Designer – MLDesign

● ... and there are others
● What about academic open source ?

– several small initiatives, not as a unifying 
project

– GME - Vanderbilt (Vanderbilt license)
● www.isis.vanderbilt.edu/projects/gme/

– Ptolemy II – UC Berkeley (Berkeley License)
● ptolemy.eecs.berkeley.edu



  

ODOG
● Requirements

1.support any interaction semantics

2.support any programming language

3.easily generate efficient code for the system 
being described

4.have a strong validation flow

5.be embeddable within design methodologies

6.be open source

● Common solution
– class libraries for syntax and semantics
– not good for 2, 3 



  

● Simple
● Tree structure for the abstract syntax

– XML

● Template based code generation for 
interaction semantics 
– Avoid the need for (difficult and error prone) 

code analysis and transformation
– code “as good as it gets”

ODOG's Solution



  

Standard ODOG Flow
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ODOG v1.0
● 3 Interaction semantics

– Discrete Events (DE) : simulation
– Dataflow (DF): data stream processing
– Synchronous (SR): software based on 

response to events

● 2 Platforms
– host : generates code for your machine so 

you can test your ideas
– multicore : generates code for DF exploiting 

parallelism

● GUI for editing and Rule Checker for 
validation



  

● Embedded systems
– simulation models for the environment
– implementation and code generation for the 

software and hardware

● Programming multi-core systems
● x64 based
● OMAP architecture (not available due to NDA)

● Planned for the near future
– Linux module programming

● device drivers : event-oriented with complex 
synchronizations

Applications



  

Final Remark

ODOG is customizable
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