

ODOG
Open source project

 for
Programming Concurrent Platforms

ivan.jeukens@gmail.com

odog.sourceforge.net

Concepts
● Component abstraction
● Composition of components

A B

composition
interaction medium

communication channel

component

● Two different kinds of languages
– for the composition (coordination)
– for the components (host)

Concepts (2)

● Coordination language
– syntax : block oriented
– semantics : interaction semantics

● Host language
– programming languages
– domain specific languages

● What can I do with such a model ?
– generate an executable code

● “Simulation” or actual code production

Concepts (3)

● What are the advantages ?
– Create programming abstractions more

natural to the application domain
● more productivity
● better understanding
● better optimization opportunities

– Better semantics (no non-determinism, or a
controlled one)

– Possibility to target to any desired platform,
hiding the details from the programmer

Applications

● Any platform / architecture that has a form
of concurrency
– there are tons....

● Examples
– interaction with “external” elements
– multiple entities on the same computation

resource
– multiple computational resources

Related work

● Is this idea original ? No
● Labview - National Instruments

Related Work (2)

● Simulink - Mathworks

Related Work (3)

● Scade – Esterel Technologies

Related Work (4)
● ML Designer – MLDesign

● ... and there are others
● What about academic open source ?

– several small initiatives, not as a unifying
project

– GME - Vanderbilt (Vanderbilt license)
● www.isis.vanderbilt.edu/projects/gme/

– Ptolemy II – UC Berkeley (Berkeley License)
● ptolemy.eecs.berkeley.edu

ODOG
● Requirements

1.support any interaction semantics

2.support any programming language

3.easily generate efficient code for the system
being described

4.have a strong validation flow

5.be embeddable within design methodologies

6.be open source

● Common solution
– class libraries for syntax and semantics
– not good for 2, 3

● Simple
● Tree structure for the abstract syntax

– XML

● Template based code generation for
interaction semantics
– Avoid the need for (difficult and error prone)

code analysis and transformation
– code “as good as it gets”

ODOG's Solution

Standard ODOG Flow

Component
selection and
composition

Component implementation
Interaction Semantics

selection

Rule Checking

Code Generation

Validation

Concepts

External
Flow

Solution to be
characterized

ODOG v1.0
● 3 Interaction semantics

– Discrete Events (DE) : simulation
– Dataflow (DF): data stream processing
– Synchronous (SR): software based on

response to events

● 2 Platforms
– host : generates code for your machine so

you can test your ideas
– multicore : generates code for DF exploiting

parallelism

● GUI for editing and Rule Checker for
validation

● Embedded systems
– simulation models for the environment
– implementation and code generation for the

software and hardware

● Programming multi-core systems
● x64 based
● OMAP architecture (not available due to NDA)

● Planned for the near future
– Linux module programming

● device drivers : event-oriented with complex
synchronizations

Applications

Final Remark

ODOG is customizable

odog.sourceforge.net

ivan.jeukens@gmail.com

mailto:ivan.jeukens@gmail.com

