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1. Introduction

ODOG is an open-source software framework for developing executable specifications 
composed of concurrent message passing components. There are other similar commercial 
and  open-source  projects  available1.  However  the  ODOG  framework  was  written  from 
scratch, which specific goals and requirements.

Borrowing  from the  terminology  of  the  Linda  programming  model,  an  executable 
specification  is  composed  of  atomic  components  described  in  some  (not  necessarily 
programming) language, called the host language, and composite components which are a 
composition of other components described by a coordination language. One of the goals of 
ODOG is to seamlessly support several host and coordination languages.

The  syntax of the coordination languages is a graph, where the nodes are components 
and edges are communication paths between components.  Hence, a coordination language 
may have a graphical notation. The semantics of a coordination language specifies concepts, 
rules  and restrictions  for  the  composition  of  components.  In  particular,  how components 
exchange  data  and  notions  around  the  � execution�  concept.  A  particular  semantics  for  a 

coordination language is also called an interaction semantics (ISem).

The usefulness of an infrastructure such as ODOG comes from the fact that individual 
languages are appropriate for a set of problems that they were designed to address, and that 
systems,  in particular  embedded systems,  have a  mix of  necessities.  Hence,  one needs to 
� glue�  different  design  techniques  under  the  same  design  flow.  Developing  a  new 
coordination language means designing its semantics, and once it is done, incorporating it in 
ODOG is easy. Hence, it can be used to rapidly testing new ideas regarding implementation of 
design languages.

1.2 Objectives

It is not the intent of the ODOG framework to applicable under any methodology (i.e, a 
miracle), but rather to provide an adequate support for experimenting with different solutions 
based  on  concurrent  components  and  executable  specifications.  Besides  allowing  for  the 
testing new ideas, it should be used by designers in useful experiments. Hence, it must have a 
good usability and necessary features. The main goals for ODOG are:

1. Allow � fast�  execution of specifications;

1 see National Instruments Labview, 
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2. Implement important ISem and support the addition of new ones;
3. Support for various host languages;
4. Have a validation flow, including debuggers, static rule checking, dynamic rule 

checking and links to external verification tools;
5. Be usable within existing design flows;
6. Provide tools for creation of correct-by-construction components.

An  important  decision  of  the  framework  was  how  to  implement  the  coordination 
language syntax and the various ISems. Other infrastructures use a library-based approach, 
that is, enhance a programming language with methods for tasks such as creation of the graph 
that describes the composition of components,  data communication, execution control etc. 
These methods are used by the atomic components and when compiled together with the 
library, an executable code for the specification is created. I believe that the main deficiency 
with this approach is that if one wants to use the specification as a starting point for the 
implementation of the system described, it will be necessary to translate all the library into 
the desired target. Sometimes, it may be even necessary to do translations between languages, 
a very problematic task.

Instead of the library-based solution, the syntax of a coordination language in ODOG is 
described by an abstract  tree-like structure,  that  can be easily  recorded in  XML. All  the 
syntactic elements of a specification, like communication points, parameters of components, 
connections,  hierarchy, etc,  are  described independently  of  any language.  In  other  words, 
atomic components  are  written in  the desired (implementation) language,  and by using a 
template together with a code-generator, all the necessary extra code for implementing the 
semantics of the coordination of components is produced. There are three major benefits of 
this approach:

● the  result  is  a  specification  that  can  be  directly  deployed,  without  any  additional 
translation;

● no unnecessary code is produced, therefore no extra overhead on execution time;
● by having a language independent syntax, several different host languages can be used; 

1.3 The ODOG framework

The following sections of this document will describe the components of the of the 
framework. They are:
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1. Graph structure for describing the syntax of coordination languages;
2. Static rule checker;
3. Support for code generation;
4. GUI front-end for editing specifications;
5. Host languages;
6. Interaction semantics
7. Platforms

In companion with this manual, the Getting Started document illustrates the use of the 
framework with examples. 
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2. Syntax

This section describes the main syntactical elements of a specification. These elements 
capture the structure of atomic and composite components. As will be seen, they are related 
forming an acyclic graph structure. A persistent representation for this syntax can therefore be 
realized in XML. Common to all  syntactic elements is the name field, which is used for 
identification.

2.1 Interface

The name of the component, together with data ports and attributes forms its interface. 

The interface provides a separation between the internals of the component and the � outside 
world�  of the specification (or eventually the environment).

A data port is by where all data is received and send by a component. A data port must 
have a type, and may have attributes. Data ports are classified as being either input (receive 
data) or output (send data).

An attribute is a tag that can be associated with some other element, in order to add 
information  to  it.  As  mentioned,  components  and  ports  may  have  attributes.  The  other 
attributable elements are version (atomic and topology), connection and method.

Every attribute is classified as:

● visible or invisible;
● with or without data;
● static or dynamic.

The visibility of an attribute is defined with respect to the internals of the component. 
An attribute tagged as visible can be seen by the host language. An invisible attribute can 
only be accessed during code generation.

An attribute may have an associated data. If it is classified as static, its value cannot be 
changed during execution of  the specification.  Otherwise it  can.  Attributes can contain a 
default  value.  The  valid  classifications  for  an  attribute  are:  visible,  with  data,  static  or 
dynamic; invisible, with or without data, static.

The interface of a component provides the information regarding its relationship with 
the environment where it is supposed to operate. Behavior must still be specified to produce a 
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useful  component.  For  an  atomic  one,  a  host  language  is  employed.  For  a  composite 
component, this is accomplished with a composition of other components. This composition 

is also called a topology. 

The first decision when creating a new component is how its interface should be. An 
entire specification can be created containing only components described by their interfaces. 
Of  course,  for  execution,  it  is  necessary  behavior.  This  separation  between interface  and 
behavior is analog to information hiding in object oriented environments.

2.2 Atomic component element

Such  component  is  represented  by  a  distinct  syntactical  element.  It  contains  the 
interface elements plus versions elements. The version element is used to capture the behavior 
of  the  component,  and  other  useful  informations.  A  component  may  have  one  or  more 
versions. However, when code generation is performed one must be choosed.

2.3 Atomic component version

Instead of describing the behavior directly by an artifact in the chosen host language, it 
is  advantageous to break it  into  a  number  of  elements.  These elements  are  grouped in a 
version. It is composted of:

● data port;
● attribute;
● value;
● method.

The interface of a component may be further extended by a version by listing additional 
data ports and attributes.

For the attributes that are tagged as with data, a value element specifies its data value. 
It overrides the default value of the attribute, if present. For the same value element, more 
than one attribute can be selected. All of them will have the same value.

 A method is an element that contains an artifact in the host language for describing the 

behavior  of  the  component.  There  are  four  possible  methods:  init,  compute,  finish and 

fixpoint.  The  init  method  is  called  only  once  at  the  beginning  of  the  execution  of  the 
specification. The finish method is analog to it, but called when execution terminates. The 
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compute and fixpoint methods may be called several times, depending of the ISem associated 
with the topology where the component is instantiated.  The fixpoint is always called after the 
compute method. At least, the init, compute and finish methods are supported by any ISem. 
The fixpoint may or may not be allowed.

2.4 Topology

The topology element represents the composition of other components. It is composed 
of:

● component instance;
● connection;
● exported port;
● attribute;
● version.

A component instance is a reference to another component, that should be inserted in 
the respective topology. A component instance has an extra name field for its instance name. 
Only the interface of each instantiated component is available for the topology element.

A connection is a relation containing exactly one output port and one or more input 
ports. It defines a particular data path of the topology. Component instances, together with 
topologies partially forms the behavior of the component.

An exported port is a port of some component instance contained in the topology that 
is  tagged  to  be  seen  at  the  composite  component  interface  that  the  topology  defines. 
Therefore,  either  a  data  or  another  exported  port  can  be  referenced.  It  inherits  the  data 
direction of the referenced (data) port. 

2.5 Topology version

The elements of a topology version are:

● component instance;
● connection;
● attribute;
● exported port;
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● value;
● version definition;
● method.

The behavior of a topology may be extended by a version by adding extra component 
instances and connections. Its interface may also be incremented, with new attributes and 
exported ports.

The value  element  have the  same function  as  in  the  atomic  version.  However,  the 
attributes  that  can  be  associated  to  a  value  located  at  the  topology version  are  the  ones 
defined  in  the  topology  element,  the  current  topology  version,  and  all  attributes  of  the 
components instantiated in the topology and the current topology version.

Version definition is an element that associates for a contained component instance, 
one of  its  version. Therefore, in order to fully determine the behavior  of a topology, one 
version definition element must exist for each contained component instance.

A method is analog to the one contained in the atomic version, but only the init and 
finish methods are allowed.

2.6 List and relations of syntactical elements

The following two tables contains each element of atomic and composite components, 
respectively. For each element, the list of contained elements is given. As can be seen, this 
relation is analog to an acyclic graph.

Element Contains

Atomic Component Data port, Attribute, Version

Data Port Attribute

Attribute Attribute Classification, Value

Attribute Classification

Version Data Port, Attribute, Value, Method

Value

Method Attribute
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Element Contains

Topology Component  Instance,  Attribute,  Exported 
Port, Connection, Version

Component Instance Value

Attribute Attribute Classification, Value

Attribute Classification

Exported Port

Connection Attribute

Version Component  Instance,  Attribute,  Exported 
Port,  Connection,  Value,  Method,  Version 
Definition

Value

Method Attribute

Version Definition

The value element determines the associated data expression of an attribute. However, 
for a component with behavior fully determined, there are three places where a value can 
reference the same attribute: at a component instance, version or the default value. To decide 
which value element should be used, a precedence relation is imposed: a value of an instance 
has higher priority, followed by one of a version of that component and the default value has 
the lowest priority.

2.7 XML representation and examples

The XML representation follows the relations described in the previous section. The 

DTD for both atomic and composite components can be found in the  dtds directory of the 
ODOGWorkspace.

The following code represents the simplest atomic component possible, one without 
any element.

<atomicComponent name="AATest1"> 
</atomicComponent>
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Another component with all elements is illustrated by the following code.

<atomicComponent name="AATest22"> 

<dport name="input" isInput="true" isOutput="false"> 
  <portType> 
    <attribute name="type"> 
    <attrClassification visible="false" hasData="false" static="false"/> 
    </attribute> 
  </portType> 
</dport> 

 
<dport name="output" isInput="false" isOutput="true"> 
  <portType> 
    <attribute name="type"> 
    <attrClassification visible="false" hasData="false" static="false"/> 
    </attribute> 
  </portType> 
</dport> 

 
<version name="ver1">
  <dport name="inputX" isInput="true" isOutput="false"> 
    <portType> 
      <attribute name="type"> 
      <attrClassification visible="false" hasData="false" static="false"/> 
      </attribute> 
    </portType> 
  </dport> 

    
  <dport name="outputX" isInput="false" isOutput="true"> 
    <portType> 
      <attribute name="type"> 
      <attrClassification visible="false" hasData="false" static="false"/> 
      </attribute> 
    </portType> 
  </dport> 
    
 <value type="String" valueExpr="integer" 
associatedAttribute="AATest22.input.type"/> 
 <value type="String" valueExpr="double" 
associatedAttribute="AATest22.output.type"/>
 <value type="String" valueExpr="double" 
associatedAttribute="AATest22.ver1.inputX.type"/> 
 <value type="String" valueExpr="double" 
associatedAttribute="AATest22.ver1.outputX.type"/>                 
 <value type="integer" valueExpr="1" 
associatedAttribute="AATest22.ver1.atribute1"/> 
 <value type="integer" valueExpr="2" 
associatedAttribute="AATest22.ver1.atribute2"/>   
 <value type="integer" valueExpr="1" 
associatedAttribute="AATest22.ver1.m1.atribute1"/> 

    
  <attribute name="atribute1"> 
  <attrClassification visible="false" hasData="false" static="false"/> 
  </attribute> 

    
  <attribute name="atribute2"> 



12

  <attrClassification visible="true" hasData="false" static="false"/> 
  </attribute> 

    
  <method name="m1" language="l1" codeURL="sd">      
    <attribute name="atribute1"> 
    <attrClassification visible="false" hasData="false" static="false"/> 
    </attribute> 
  </method> 
</version>   
</atomicComponent>

This component has two data ports (input and output) on its interface. One version, 
named ver1 is defined, containing, two extra data ports (inputX and outputX), two attributes 
(attribute1 and attribute2) a method (m1) and seven value definitions. Note that the type of 
data transmitted by a data port is represented by a predefined attribute (portType). Also, when 
a  value makes a reference to an attribute,  it  employs its  full  name.  The full  name of  an 
element is the concatenation of all its containers, up to the component element, and its name.

The following examples illustrates a topology containing three component instances 
(produtor,  consumidor1  and  consumidor2),  where  the  output  port  of  one  component 
(produtor.out)  is  connection  to  an  input  port  of  both  components  (consumidor1.in  and 
consumidor2.in), via two distinct connections (c1 and c2).

<topology name="Top"> 
  <compInstance instanceName="produtor" compName="Producer" 
libraryURL="ProducerConsumer.xml"> 
  </compInstance> 
  <compInstance instanceName="consumidor1" compName="Consumer" 
libraryURL="ProducerConsumer.xml"> 
  </compInstance> 
  <compInstance instanceName="consumidor2" compName="Consumer" 
libraryURL="ProducerConsumer.xml"> 
  </compInstance> 
  <attribute name="ISEM"> 
    <attrClassification visible="false" hasData="true" static="true"/> 
  </attribute> 
  <attribute name="Toplevel"> 
    <attrClassification visible="false" hasData="false" static="false"/> 
  </attribute> 
  <connection name="c1"> 
    <portRef completePortName="Top.produtor.out"/> 
    <portRef completePortName="Top.consumidor1.in"/> 
  </connection> 
  <connection name="c2"> 
    <portRef completePortName="Top.produtor.out"/> 
    <portRef completePortName="Top.consumidor2.in"/> 
  </connection> 
  <version name="DEsim"> 
    <defVer name="d1" instanceName="Top.consumidor1" versionName="DEsim"/> 
    <defVer name="d2" instanceName="Top.consumidor2" versionName="DEsim"/> 
    <defVer name="d3" instanceName="Top.produtor" versionName="DEsim"/> 
    <value type="string" valueExpr="DE" associatedAttribute="Top.ISEM"/> 
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  </version> 
</topology>
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3. Rule Checking

Just like in any programming environment, the description of a component may contain 
flaws. For instance, a topology with component instances that are only partially defined or an 
attribute with several values referencing it in the same version are example of syntactical 
inconsistencies.

Code cannot be generated for a specification containing erroneous components. One 
solution would be hardwire code inside the implementation of the code generation to detect 
all possible error situations and report it to the designer.

However,  there  is  a  better  solution  that  exploits  the  fact  that  the  syntax  of  the 
specification  is  language  independent,  based  on  a  graph  structure.  One  can  code  every 
possible error situation as rules2, using some logic formalism, and than check if the rule is 
satisfied by the graph structure. The two major advantages of this approach are:

1. It  is  very  easy  to  add  new  checks.  Instead  of  searching  the  source  code  of  the 
framework and adding extra code to handle the potential erroneous situation, it is only 
necessary to code the respective rule in a text file;

2. The user of the framework can too add its rules. Those rules would impose constraints 
on its components, like ensuring that some value is within a certain range, or that one 
component has at least one connection to every data port, etc.

Therefore, one of the tools of the ODOG framework is a rule checker, that reads a rule 
and determines automatically if a given component satisfies it. It is a static rule checker, since 
the verification is done at design time. Dynamic rule checking is also possible, but is not 
currently supported. Only components that pass the rule checking tool can be input to the 
code generating tool.

3.1 Syntax and Semantics

A rule is a logic expression over the elements of the graph structure. The atom of a rule 
is a element with its associated attributes or a literal. Each different syntactic element have a 
list of available attributes. The following table list them, together with the type name of each 
element. All syntactic elements have the name and fullName attributes.

2 not all error conditions are possible or efficient to write as rules.
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Element Type Attributes

Data Port dport isInput, isOutput

Exported Port exportedPort

Atomic atomicComponent

Attribute attribute

Attribute 
Classification

attributeClass visible, hasData, static

Topology topology

Component Instance compInstance compName, libURL, instanceName, 
localInstanceName, fullInstanceName

Atomic Version atomicVersion

Topology Version topologyVersion

Value value type, valueExpr, isDefault

Method method language

Connection connection

Version definition defVer versionName, instanceName

For an atomic component, an atomicComponent node always exists and has a zero in-
degree. Likewise, the topology node for a topology.  The definition of each attribute of an 
element is:

Element Attribute Definition

name The name of the element.

fullName The concatenation of names of all elements starting from the first 
component element (atomic or not) up to the container of the 
attribute.

visible the state of visibility of an attribute.

hasData the state of presence of data of an attribute.

static the state of the accessibility of the data of an attribute.
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isInput if the associated data port is a receiving port.

isOutput if the associated data port is a sending port.

compName the name of a component to be instantiated.

libURL the library containing the component to be instantiated.

instanceName the name of the component instance

fullInstanceName similar to fullName, but instead of the component's name as the 
last element, uses instanceName

localInstanceName the  concatenation  of  the  topology's  name  that  contains  the 
instance, the version's name if the instance is within a version, and 
the instanceName. It is different from fullInstanceName, since the 
full name includes all elements up to the very first component.

type a string denoting the type of the value.

valueExpr an expression denoting how the value is obtained.

language one of the host languages supported by the framework.

versionName the name of the version selected.

instanceName (within a 
defVer)

the fullInstanceName of the compInstance being defined.

The attributes visible, hasData, static, isInput and isOutput have possible values � true� 
or  � false� .  The  valueExpr  attribute  may have any  value  from the  available  types  of  the 
framework. All the other attributes have any string as possible values.

There are two means to access the value of an element attribute within a rule: 

1) by giving the full name of the element; 
2) by associating a variable with a particular element. 

The first case is done by the writer of the rule. The second one is done by the tool, 
when encountering path quantifiers. The syntax for accessing an attribute is:

node full Name OR variable name '[' attribute Name ']'

Consider the example of component AATest2 shown in section 2.7. The sub-expression 

AATest22.ver1.inputX[isInput] is accessing the attribute isInput of the data port inputX.
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Comparison expressions can be build using atoms and comparison operators. The usual 
operators are available: =, !=, <, <=, >, >=. Note that the last four operators make sense only 

for the  valueExpr attribute  of  a  value.  Using again component  AATest22,  the  expression 

AATest22.ver1.outputX[isOuput] = � true�  is testing if the port outputX is tagged as a data 
sending port.

Comparison expressions can be glued by conditional operators. The common logical 
operators are available: && (and), || (or), => (imply), <=> (if-only-if), ~ negation.

The syntactical elements are grouped in a graph structure, where each edge between 
nodes represents a containment relation, that is, the source node contains the sink node. A 
rule contains to extra operators, named as path-operators, for exploring this relation: 

-> : is a � has edge�  operator; 
->* is a � has path�  operator. 

The syntax is:

node full Name OR variable name ['->' OR '->*' ] node full Name OR variable name

For AATest22, the expression AATest22 -> AATest22.ver1 means that a node with full 

name AATest22 contains a node with full name AATest22.ver1.
The explicit use of the full name of elements in expressions limits its usefulness, since 

for every possible specification, the rules would need to be rewritten. A better idea is to use a 
variable, and bound it to a specific node. Currently, there are two ways to declare and bound a 
node to a variable: the universal quantifier and the existential quantifier.

The syntax of the universal quantifier is: 

'PT.'nodeType'.'varName'(' expression ')'

nodeType is one of the possible types of elements listed in the above table. varName is 
an identifier for the variable. For the universal quantifier expression, all the nodes of the type 

nodeType of the graph will be bound to the variable  varName, one at a time. The universal 
quantifier  expression  is  true  only  if  for  every  possible  assignment  of  the  variable,  the 

expression is evaluated to true.
The syntax of the existential quantifier is analogous:

'EX.'nodeType'.'varName'(' expression ')'
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The only difference to the universal quantifier is that the expression is evaluated to true 

if it is found at least one node binding to varName that evaluates expression to true.

As an example, the expression PT.dport.d( d[name] != � porto�  ) means that no data 

port of an atomic component can be named as porto.

For examples of rules, see the OdogRules directory of the odogWorkspace.

3.2 Types of rules

Although any valid rule within the ODOG framework follows the syntax and semantics 
described above, it is useful to classify the rules according to different tasks. Currently there 
are the following groups of predefined rules:

● syntax;
● code generation;

All these rules are shipped under the OdogRules directory of the odogWorkspace.
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4. Code Generation support

The ODOG framework maintains code generation as simple as possible. Currently, no 
parsing and analysis of host language code is necessary. Neither  translation between host 
languages. For atomic components, the designer implements the behavior of the methods in 
any of the supported host languages. The code generating tool reads those peaces of code, 
performs some text  transformations  on them, and together  with predefined parameterized 
templates of code, will produce the final executable for the desired platform.

A platform is defined as the target execution environment of the specification. Two 
attributes must be present in the toplevel3 component of a specification: Toplevel (indicates 
that  the  component  is  the  toplevel  one)  and ISEM. The ISEM attribute  will  specify  the 
interaction semantics for the respective composite component, and must be present in at least 
the toplevel component. Other composite components may also have this attribute, identifying 
the desired ISEM. This mechanism allows for specifications with multiples ISEMs.

The input to the code generation is a checked composite component, together with the 
desired version for it.  The tool generates a module for each component instance, for each 

composite component with a distinct ISEM, a main file and a Makefile.

4.1 Template code generation

The code generation mechanism relies on a template that has two types of elements:

1) character data; 
2) parameters. 

A character data is a set of ASCII characters.  Parameters are variables with values 
attributed by the code generation tool. A template is described in XML.

The template code generation is used throughout the ODOG framework. For instance, 

the code associated with a topology governed by a certain ISEM is a template. Its  compute  

and  fixpoint  methods  are  predefined  in  this  template.  Templates  for  the  available  code-

generators can be found under the CodeGenerators directory of the odogWorkspace.

3 toplevel is an composite component that is not contained in any other component of the specification.
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5. Graphical environment

A text editor is sufficient to create components and build a specification, since they are 
a set of text files. However, a GUI for editing specifications is of great utility, for two main 
reasons:

● it allows for host languages that are not necessarily textual;
● creation and editing is simplified by avoiding syntax details.
● a GUI provides an environment for management of components and specifications, 

organized in projects and libraries.

An important philosophy behind the ODOG framework is to relief the designer from 
burdens and complexities associated with the creation of components and specifications, that 
arise are at component development. For atomic components, one must understand the host 
language, how to employ it in a component, how to ensure that its behavior is correct and well 
constructed. For composite components, it may be necessary to understand the interaction 
semantics to a great level, in order to avoid undesirable behaviors. The ODOG framework 
tries to provide several tools to alleviate the designer from those technical burdens, and to 
concentrate  on  the  design  itself.  Currently,  two groups  of  tools  are  planned:  component 
creation and specification analysis.

The first group act when the designer is developing the component. The objective of 
such tools are simplification of the process and/or ensuring correctness. For example, starting 
from a finite state machine, possibly captured by some graphical tool, an atomic component 
can  be  automatically  generated.  The  second  group  acts  after  the  specification  is  code 
generated, and returns useful information to the designer. A typical example is a debugger.

The GUI environment should be the hook for all those tools.

5.1 Meta-artifacts and artifacts

A component or a rule is named an artifact within the GUI environment. The property 
of an artifact is that is can be input to the code generation, that is, an artifact is ready for use. 
Although static rules are not code generated, they must be checked before code generation. 
Also, dynamic rules should be inserted in the generated code. An artifact provides the hook 
for the actual description of the component, plus extra information, like its version or a textual 
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message used for commentaries or reports.
A  project  is  a  collection  of  artifacts  forming  a  specification.  A  library  is  also  a 

collection of artifacts, but not necessarily forming a  specification, that is, it should not be 
input to code generation.

An artifact is a final product, meaning that once it is finished, it is ready for producing 
the  desired  code.  As  mentioned  in  the  previous  item,  component  creation  tools  are  an 
important objective of the ODOG framework. It is possible that some of those tools do not 
work with completed artifacts, but with artifacts with only some abstract information of the 
component or rule. After some generation process, the real artifact is produced. Therefore, a 
meta-artifact is an object that after some transformation, will produce an artifact. The FSM 
example  of  the  previous  section  is  a  meta-artifact.  Meta-artifacts  can  be  placed  within 
libraries and projects, but for code generation, at least one artifact must have been generated.

5.2 User interface

Please refer to the Getting Started document available at http://odog.sourceforge.net for 
how to use the GUI environment and its capabilities. 

http://academia-atores.sourceforge.net/
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6. Component's host language

Depending  on  the  host  language  and  the  type  of  the  component  artifact,  different 
techniques should be used in order to allow the component to interact with its surrounding. 

General  purpose  languages  usually  don't  directly  fit  the  data  exchange  model  of 
components.  Hence,  a  technique based on abstract  methods is  employed for those.  These 
methods are akin to procedures, and their code is filled during code generation with code for 
data transmission.

For domain specific languages, it is made a mapping between the appropriate syntactic 
elements of the language and the component. For example, Esterel4 is a language that is based 
on processing of input events and production of output events. Those events flow through 
ports. Therefore, if Esterel is used as a host language, the framework should map the Esterel's 
ports with the component's ports.

Currently the ODOG framework supports the ANSI-C as a host language.

6.1 Abstract methods for general purpose languages

The data communication methods, their meaning and prototypes are:

void send(char *connection, void *data, size_t length)

Used to send data through one connection associated with an output port. The contents 
of the data pointer, whose length is specified by the length parameter, will be copied to all 
destination ports associated with connection. The contents of connection must be the name of 
a connection associated with an output port of this component. In order to facilitate the use of 
the data communication methods, two auxiliary methods are provided:

int numberOfConnections(char *port)

char *nameOfConnection(char *port, int number)

The numberOfConnections method returns the number of connections associated with 
the port with name specified by the port parameter.

4 www.esterel-technologies.com
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The nameOfConnection method return the name of the connection associated with port  
and whose number is given by the number parameter.

void sendDelayed(char *connection, void *data, size_t length, double instant)

Similar to the  send method. The instant  parameter  indicates a future moment in time 
where the data will be available to the destination. Therefore, in order to be different than the 
send  method, the component using the  sendDelayed  method must be governed by an Isem 
that has a notion of time evolution.

void sendAll(char *port, void *data, size_t length)

void sendAllDelayed(char *port, void *data, size_t length, double instant)

Just as the  send and  sendDelayed  methods respectively, but delivers the data to all 

connections associated with the output port port. 

void receive(char *connection, void **data, size_t *length)

Receives data from the given connection associated with an input port. The data vector 

is allocated by the framework, so after processing, a free(data) should be called.

char canReceive(� connection� , int size)

Returns  a  value  equals  to  zero  if  connection  can  supply  size  data  elements.  The 

connection  should be associated with an input port.  Otherwise returns a value greater than 
zero.

char canReceiveAll(� port� , int size)

Similar to the canReceive method, but checks all the connections associated with port. 

char canSend(� connection� , int size)

Returns a value equals to zero if  size  data elements can be send through  connection. 
Otherwise returns a value greater than zero.
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char canSendAll(� port� , int size)

Similar to the canSend method, but checks all the connections associated with port.

6.2 Types

The data port and value elements of a component have a field to specify its type. Those 
types should be given in the host language that the component will be generated, since this 
field will be propagated during code generation. The framework checks if every port in every 
connection has the same type.

6.3 Examples

The following code illustrates the use of some of the abstract methods of section 6.1.

void init() { 
    scheduleMe(1.0); 
} 

static char msg[45]; 

void compute() { 

    sprintf(msg, "tempo = %f", currentTime()); 
    sendAllDelayed("out", msg, sizeof(msg) + 1, currentTime() + 0.35); 

    scheduleMe(currentTime() + 0.4); 
} 

#include <stdio.h> 
void finish() { 
    printf("Produtor encerrou\n"); 
} 

This  component  has  one  output  port  named  out.  At  the  initialization  of  the 
specification,  the component requests to be executed once at instant  of  time 1.0. At each 
execution of the component, a string message is sent into the future (0.35 from the moment of 
each execution)  to all connections associated with port � out� . The component requests to be 
executed at each moment of time, multiple of 0.4. When the execution terminates, if this 
happens, the component prints a text message.
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7. Interaction semantics

7.1 Discrete events (DE)

The Discrete Events5 interaction semantics associates to each connection between data 

ports the communication of events between the source and destination components. An event 

is  a  pair  of  a  data  value  and  a  real  number,  called  the  timestamp.  The  purpose  of  the 

timestamp is to establish a total order on all the events generated during execution. In other 

words, the timestamp represents a time instant.

An atomic component under the DE semantics has its  compute  method called at any 
time instant where events are present on at least one of its input ports. The component may or 
may not produce new events, or alter its internal state, as a consequence of the execution of its 

compute method. At every occasion that a new event is produced, its timestamp must be equal 

or  greater  than  the  timestamp of  all  events  that  triggered  that  execution  of  the  compute 

method. If an event with a timestamp smaller than the current instant of time is generated, a 
fatal error is reported and execution is aborted.

Conceptually, a new event is not sent directly to the ports of the components connected 
to the output port that generated the event. It is rather placed on a queue, where the events are 
ordered based on their timestamps. The same queue is used for all components. Hence, the 
time evelution in the DE semantics is global. The selection of which component should have 

its compute method executed next is based on the destination of the first event on the queue. If 
there are more than one event for this component at the head of the queue, all are removed 

and  placed  on  the  respective  input  ports.  If  after  the  compute method  of  the  selected 
component there are still events on its input ports, they will be discarded.

A potential  conflict  situation  that  may arise  is  the  presence  of  events  to  different 

components with the same timestamp at the head of the queue. In this case, the decision of 
which component should be executed is done based on a priority value. Each component has 
a distinct priority value. This value is computed from the topological order of the graph of the 
topology where the components are instantiated. The nodes of this graph are the atomic (or 
composite components with different ISems) components, and edges are connection between 
data ports. In order to be able to compute the topological order, the graph obtained from the 
topology  must  be  acyclic.  Note  that  it  is  still  possible  to  have  cyclic  connections  on 
topologies, if it is guaranteed that the events produced along every possible cycle will always 

5 J. Banks, et al, Discrete event System Simulation, ISBN 0131446797, 1996.
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be into the future. This information can only be provided by the designer. In order to do so, an 

attribute named delayed (invisible, without data, static) must be associated with the respective 
output port. It is not associated with a connection, because when a component is created, it is 
not known where it will be used, that is, how many connections there will be on a data port.

The execution of a topology governed by DE is controlled by a scheduler that finds at 
every  instant  of  time,  which  is  the  next  component  to  execute.  The  execution  of  the 
specification stops when the global event queue is empty, or when a particular instant of time 
is reached.

The compute method of an atomic component under the DE ISem should have the 
following pseudo-code:

1. For each input port or connection, check the presence of events with the canReceive 
method. It is guaranteed that at least one will have new data;

2. Read all the events available with the receive method;
3. Do some processing based on the new events, and/or the component state;
4. If desirable, produce new events with the send method.

The semantics of the DE ISem is deterministic. Note that zero delay cycles are not 
allowed, that is, connections forming cycles that produce events with the same  timestamp. 
Unfortunately, there is no adequate way to prevent a designer for introducing such cycles. 
Therefore, it is possible that flawed specifications when executed, don't produce outputs since 
they keep looping on the same time instant. 

In addition to the methods described in section 6, the DE semantics provide specific 
methods to the atomic component:

scheculeMe(double instant) : requests the execution of the atomic component at instant. 
If multiple calls to this service are made prior to reaching the least value of instant specified 
by them, only the last one will be efective.

abortSchedule() : invalidates the previous call to the scheduleMe().

currentTime() : returns the current value of time.

7.2 Dataflow (DF)
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This  semantics  breaks  the  execution  of  a  component  in  a  series  of  firings.  A 

component is said to be able to fire when at least on data value is available in every input 
port.  In  order  to  avoid  loosing  data,  each  connection  is  associated  with  a  (conceptually 
infinite) queue. At any moment, more than one component may be able to fire. The scheduler 
implementing the semantics chooses with component to fire.  The dataflow semantics has 
been extensively studied in the past6.

In ODOG, a dynamic version of the dataflow semantics is adopted:

● the component should inform the sample rate of each input port;
● at each firing, the component may change the sample rate of any port.

With this two conditions, any computable function can be captured using DF. However, 
it is impossible to determine if the execution will be bounded, that is, if an upper bound on 
the capacity of the data queues is  finite,  and deadlock-free. Deadlock is a condition that, 
although there are non-empty queues, no component is able to fire with the available data.

As in the DE semantics, cycles in the topology represent a problem. It is easy to see 
that a cyclic condition avoids the firing of the components in the cycle, hence, deadlock. The 
solution is during initialization, generate data somewhere in the cycle, so that when execution 

starts, some components may fire. The delayed attribute is used to mark the output ports that 
will generate data during the initialization phase.

Under the DF semantics, the designer has the following semantic specific methods:

void setSampleRate(char *port, short value): sets the sample rate of port.

int getSampleRate(char *port) : returns the sample rate of port.

void stopExecution(void) : asks for immediate termination of the execution. The finish 
methods of all components will be called before exiting.

The typical  init method of an atomic component should set the initial values of each 

sample and if required, generate initial data. The  typical  compute method  should  read  the 
required data, based on the current set of sample rates, perform some computation, generate 
output, and if necessary, change some input sample rates. Note that a sample rate equals to 
zero, means that the respective input will not be considered in the next firing. 

6 Please,  refer to W. M. Johnston, J.R.P. Hanna and R.  J.  Miller,  Advances in Dataflow Programming Languages,  ACM 

Computing Surveys, Vol 36,  N 1, 2004.
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Bellow is an example of the flexibility of the dynamic version, by showing how to 
implement a selection component: based on the value of a control input, read data from the 
respective data input, and send it to the output.

void compute() { 
   size_t len; 
   char *ctrl; 
   double *data; 

   switch(state) { 

       case WAIT_CONTROL: { 
           receive(nameOfConnection("control", 0), &ctrl, &len); 
           if(*ctrl == 0) { 
               setSampleRate("input1", 1); 
               state = WAIT_INPUT1; 
           } 
           else { 
               setSampleRate("input2", 1); 
               state = WAIT_INPUT2; 
           } 
           setSampleRate("control", 0); 
           free(ctrl); 
       } break; 
     
        case WAIT_INPUT1: { 
            receive(nameOfConnection("input1", 0), &data, &len); 
            sendAll("output", data, len); 
            free(data); 
 
            setSampleRate("input1", 0); 
            setSampleRate("control", 1); 
            state = WAIT_CONTROL; 
        } break; 

        case WAIT_INPUT2: { 
            receive(nameOfConnection("input2", 0), &data, &len); 
            sendAll("output", data, len); 
            free(data); 
 
            setSampleRate("input2", 0); 
            setSampleRate("control", 1); 
            state = WAIT_CONTROL; 
        } break; 
    } 

}

7.3 Synchronous (SR)

7.1 Semantics
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The SR semantics draw its name from the synchronous hypothesis: for any set of input 
events, the system reacts in zero time. This hypothesis has been used extensively for hardware 
design, and also for embedded software. Its major advantage is to provide a deterministic 
concurrent model. The version implemented in the ODOG framework is the one described in 
Edwards7.

The SR semantics provides the notion of an instant: every set of new events that the 

system must  react  to  constitutes  an  instant.  At  each  instant,  the  compute method  of  the 
components  are  executed  in  such  a  way  that  the  outputs  of  the  system  are  generated. 
Therefore, it is expected that the system converge to this output set at every possible instant. It 
is  imperative  then  to  established  necessary  and  sufficient  conditions  to  obtain  this 
convergence in finite time.  One definition and one condition on the atomic components are 
required for convergence:

Definition: at most one data value can be associated8 to each connection. Thus, a connection 

can be in one of three states: unknown, known and absent, known and present. The first state 
means that whether the connection has or has not data is not known. With the exception of the 
system's inputs, every connection is at the unknown state at the beginning of an instant. The 
second state means that it is known that in the particular instant, no data will be generated in 
the respective connection. The third state indicates that data was generated in the current 
instant.

Condition:  every atomic component  must  implement  a  monotonic  function.  A monotonic 
function  is  one  that  given a  set  of  � more  defined�  inputs,  will  generate  � more  defined� 
outputs. By more defined I mean that the difference between two sets is that the more defined 
can only change some previously unknown inputs to known, and no known input may change 
back to unknown. As a consequence, in SR, whenever an output is set to be known, it cannot 
be changed back to unknown. 

As in the DF and DE ISems, cycles of components represents a problematic situation, 
since deadlock may arise. The solution is to classify atomic components in two categories: 
Strict and Non-Strict. The first type require that all of its input connections be in a known 

state prior to allowing its compute method to be called. The second type can be called several 
times during an instant, independent of the state of its input connection. 

The scheduler of the SR ISem constructs a graph based on the components and their 

7 S. A. Edwards, The Specification and Execution of Heterogeneous Synchronous Reactive Systems, PhD Thesis, University  

of California, Berkeley, 1997.
8 this can actually be relaxed to multiple data items, but not currently implemented in ODOG.
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connections, and whenever a Non-Strict component is found, no edges are placed going to 
this component. In order to be able to execute the specification, the resulting graph cannot 

have any cycles. The order of calling the compute methods is then a topological order of this 
graph.  At the end of each iteration of  this  order, if  any new event was generated,  a new 
iteration is run. The instant terminates when during an iteration, no new event is produced. If 
all components are implemented using monotonic functions, it is guaranteed that the number 
of iterations is finite.

7.2 Component development under SR

The  receive  method under SR has a variation when the data transmitted is an scalar 
value. In this case, the semantics described in 6.1 is changed:

void receive(char *con, void *data, size_t *len) : the data parameter is no longer a pointer to a 
vector of void. It is a pointer to the scalar type being communicated.

Therefore, pay attention to the type of the input connection when using the  receive  

method.
Since the connections under SR may have three instead of two states, the designer has 

the following specific methods for setting/testing the known and absent state:

void setAbsent(char *con) : set the state of the connection specified by con as being known 
and absent in the particular instant.

void setAbsentAll(char *port) : set the state of all connections associated with the input port 

port as being known and absent in the particular instant.

char isAbsent(char *con)  :  returns 0 if  the state of  connection  con is  known and absent. 
Otherwise returns 1.

char isAbsentAll(char *port) : returns 0 if the state of all connections associated with input 

port port is known and absent. Otherwise returns 1.

The  canReceive and  canReceiveAll methods will return 1 only when the state of an 

input connection is different than unknown. The canSend and canSendAll methods will return 

1 only when the state of an output connection is unknown.
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Strict components are monotonic by definition. However, it is possible to implement 
non-monotonic  functions  with  the  Non-Strict  components.  Bellow is  a  fragment  of  code 
exemplifying this situation:

...
if(isKnown(“preferred”, 0)) {

          if(canReceive(“preferred”, 0)) {
              sendAll(“output” ...);
          }
          else
          if(isKnown(“alternate”, 0)) {
              if(canReceive(“alternate”, 0)) {
                  sendAll(“output” ...);
              }
              else {
                  sendAll(“output” ...);
              }          
          }
      }
      ...

In the above code, there are two input ports:  preferred  and  alternate.  Whenever the 

state of preferred is known, if it has data, some action will be taken. If it is absent, then the 

alternate input is verified for the presence of data. In order words, the preferred's state must 

always be checked first,  and has precedence over the  alternate's  state.  The above code is 
monotonic. What could not be done is to check both preferred and alternate at the same time, 

since both would change the state of output. Therefore, one must  never write a component 

based on the order of arrival of events. 
Non-Strict are useful not only to avoid deadlock, they can speed-up the convergence of 

a system. Think of logic gates: whenever a controlling value is available at an gate's input, 
output can be produced irrespective of the other inputs. In order to tag a component as Non-

Strict, it is only necessary to add an attribute named nonstrict (invisible, static, without data) 

to it.

The method fixpoint is allowed under the SR ISem. Its purpose is to allow the designer 
to update the state of a component. Since the number of times of each component's compute 
method is called is unkown, it is only safe to update any state when convergence is found, that 

is, when the instant is finished. Therefore, fixpoint is used for this purpose.
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8. Platforms
A platform is a set of software libraries, hardware information and models, that can 

execute code. Therefore, the target of any code generation is a platform. ODOG currently 
have platforms: 

● host : generates code for running under a Linux/GNU machine;

● multicore : generates code for a multicore machine running LINUX/GNU;

Depending on each platform, an ISem and/or host language may be available or not. 
Also, the actual code generated for the same specification can differ greatly depending on the 
target platform.

8.1 Host

This platform is mainly used for testing purposes. Together with code for all atomic and 
composite components instances, a Makefile and a main.c file are generated. The Makefile 
includes an application dependent file (AppMakefile) for referring to external resources. The 
main file is used to start the execution. Depending on the ISem, it has different arguments:

● DE : startime and stoptime : for specifying the time interval of execution;

● SR : numberOfIterations : gives the number of maximum instants to be processed;

● DF : none, runs forever.

8.2 Multicore

This platform can generate code only for the DF ISem. The code generator produces 
code using the posix threads API, therefore automatically using all processor cores from a 
multicore chip. No input from the designer is necessary.
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