ODOG

Framework for Programming Concurrent
Platforms

http://odog.sourceforge.net/

Vesion 1.0

February 2008

Copyright © 2006-2008 Ivan Jeukens

1 The Producer/Consumer

Start this demo by calling the odogeditor GUI editing tool. On the left frame, right-
click on the Projects node. A pop-up menu appears with two options: New Project and
Import Project. If an existing xm/ file describing a project exists together with all component
descriptions, it can be imported within the editor using the second item of the menu. To start
a fresh project, select the first option. A screen similar to the following should appear.

w ODOG Editor] K
Configurations Help
[Projecs
[Projects
Project name : | ‘
Location | |
Design Type: @ System _ Library
Done

To create a new project, it is necessary to name it and so select a base directory where
its data will reside. The new project must be either a System (specification that can be code
generated) or a library (collection of artifacts). Name the project as ProducerConsumer and
select any directory on your machine. The ProducerConsumer should appear under the
Project tree node.

Now that the project is created, it should be populated with meta-artifacts and artifacts.
A diagram of the system of this demo is shown on the next figure. Boxes represent
components, circles data ports, and arrows connections.

in Consumidor1

Produtor out

in | Consumidor2

The system is composed of three components, where one produces data (Produtor) for
the other two (Consumidorl and Consumidor2). These two components are instances of the
same component. There are two distinct connections between the data ports: ¢/ links output
port out of component Produtor with input port in of Consumidorl, and likewise c2
connections Produtor and Consumidor?2.

In order to capture the above specification, three components will be necessary: an
atomic component for Produtor, another atomic component for Consumidorl and
Consumidor2, and a composite component for the topology show in the figure.

A right-click on the ProducerConsumer project tree node to reveal the options for
manipulating a project. Click on Add Artifact. This should show the list of artifacts editors
available within the framework. Choose Atomic Component and type Producer as the name
of the component. Repeat this operation for the atomic component Consumer. For the
composite component top, select the Composite Component editor. Now, all three
components are created. You can save the project by using the Save Project option of the
pop-up menu on ProducerConsumer tree node.

What has to be described now is the interface and behavior of each component. The
first task is to add the syntactical elements. Right-click on the Producer component node in
the projects tree and select the edit option. This should open on the right frame the respective

artifact editor. A screen like this should appear:

|+ 0DOG Editor

Configurations Help

Projecs | Editing Producer
? Projects Data Port rAttribut_e r\u’ersion

-3 J,J ProducerConsumer
Producer (not checked)
Consumer (not checked)

Top {checl passed)

| commit || cancel |

Both the atomic and composite artifact editors have a similar appearance. For each
syntactical element, a list is associated. A context pop-up menu is available for each list, with
three options: add, edit and delete. In the above screenshot, the lists for the interface elements
(data port and attribute) and version element are shown. Right-click on the data port list and
select the add option. The following dialog should appear:

'+ dport Editor
| Data port data | attribute |

portType | porType |

name | |

islnput [_]
isOutput [|

commit || cancel

Each syntactical element has a specific dialog. The above figure is the dialog for data
ports of atomic components. It allows for the creation of such elements.

Create a port named out, select the isOutput option, and click on the portType button.
This pops another dialog for editing the type of the port. Every port must have a type. Type in
the valueExpr field the string “char *”. This indicates for the code-generator the expected
type flowing through this output port. Click on commit and again in commit. Now, the out
port should appear on the list of data ports. Since the component Producer does not have any
attributes, its interface is completed. However, in order to be instantiable, at least one version
must be present. Create a new one clicking add on the context menu of list Version. The tool
will prompt for a name of the version. Type DEsim and click OK. Click commit on the
component editor frame. This finishes the editing of component Producer. Repeat the same
operation for Consumer adding the in input data port and version DEsim.

So far we have two atomic components, with syntax and no behavior. At this point, one
can choose to add behavior to then, or to create the syntax of the composite component. Lets
do this last option. Click on the top component node and select edit. The composite

component editor should appear:

‘v 0ODOG Editor
Configurations Help

Projecs | Editing top

¢ =1 Projects il compinstance | atuibute | exportedPort | connection | version
-3 J,J ProducerConsumer
Procucer (not checked)

Consumer (not checked)

top (not checlked)

commit | | cancel

Similar to the atomic component editor, the composite component editor first displays
its interface elements together with the version element.

The specification requires one instance of the component Producer and two instances
of the component Consumer. In order to add an instance, it is necessary to specify the
component's name, and project where it is located. This project must be loaded within the
editor. There are two methods for loading a project within the editor: the
ODOG_LIBRARIES environment variable or the Library Index frame. To access it, on the
menu Configurations, choose the item Library Index. This will show the following frame:

v

= Artifacts . | |
i i rowse

=M senvicesRules :
o 5l cgRules

. | Add library ‘ | Remove library
= R SyntaticRules i
o j_J ProducerConsumer Jhome/ivan/odog/odogWorkspace/ProducerConsumer/ProducerConsumer.xml

| Ok ‘ | Cancel |

All the projects added via the ODOG_LIBRARIES variables will always be shown on
the left frame. In this case, there is SyntaticRules, cgRules and serviceRules. The projects
loaded into the GUI are automatically added to the Library Index. Therefore, the
ProducerConsumer project can also be seen on the left frame. Its respective location is shown
on the right frame. If one desires to add more projects to the Library Index, click the browse
button and go to the directory where the project is located. After selecting the project's xml
file, click Add library. This will include all the selected project's artifacts into the Library
Index.

Click Ok and return to the composite component editor. Now the instances can be
added. Select the component instance context pop-up menu, and click add. The following
dialog will appear:

| » complinstance Editor

Component instance date

Library Viewear | View |

instanceName | |

compName | |

libraryURL | |

| commit || cancel ‘

The intanceName field is a distinct name for the instance. Type Produtor. Then if you
remember the name of the component and the name of the file describing the project where it
resides, place them on the compName and libraryURL fields. Otherwise click on the View
button and the Library Index frame will appear again. This time, instead of using the right
frame for adding a project, navigate on the left frame, expanding the ProducerConsumer
node. Select the Producer component and click Ok. You will see that the compName and
libraryURL will be automatically filled with the correct values for the component that you
just selected on the library frame. Click commit and the new component instance will appear
on the compinstance list. Repeat this procedure for instances Consumidorl and Consumidor2
of component Consumer.

Now that we have the necessary instances, the connections must be placed. Add a new
connection by using the appropriate pop-up menu. The following dialog should be displayed:

v connection Editor

f Connection data r attribute

name | |

Input Ports

commit H cancel

The name field is a distinct name for the connection. Type c/. Output port is the data

sending port of this connection. Click on the button. The following dialog will appear:

top.consumidorl.in
top.consumidor2.in

op.produtor.out

Ports

| Commit || Cancel |

The Ports list shows the available ports that can be referenced. Since we are adding a
connection at the interface level (not at version level), only ports of the interface of the
available component instances are shown.

The names shown are full instance names (the name of the port plus the name of all
syntactical elements up to the component containing it). Select the fop.produtor.out port. Add
the port top.consumidorl.in using the input port list. Click commit. Repeat this process for
connection c2, but use the top.consumidor2.in as input port.

Next, if code generation is desired, two attributes will have to be added to some
composite components: ISEM and Toplevel (these names are case-sensitive). The first one
tells which interaction semantics to apply to the topology, and the second indicates that top is
the toplevel component. The classifications of those attributes should be invisible, hasData
and static for ISEM, and invisible no data for Toplevel. Go to the attribute tab, and click add
on the pop-up menu. The following dialog will be shown:

[+ attribute Editor

aturClassification | awrClassification |

[]1Has default value | value |

name | |

commit || cancel

10

First add the Toplevel attribute. For the ISEM attribute, when the classification is
committed, the has default value check-box will be enabled. Don't and any default value.

Next a version must be added to the top component. Name it DEsim, and edit it by
using the pop-up menu on DEsim. The following screen will be displayed:

|w version Editor X
[LVersion data | compinstance rattrihute |/deﬂ-'er rvalue rexpmmdPun rcunnectiun rmethud |

name |[DEsim |

| comimit | | cancel |

First, we need to associate a version for each component instance. Click the add option

of the defVer element list, and the following dialog appears:

11

| defver Editor

name | |

Component Instance |tup.cunsumidur1(Cunsumer, ProducerConsumear.xmi) |v|

DEsim

Versions

‘ commit || cancel ‘

For each possible instance, the list of its available version is shown on the Versions list.
Type any name, select a component and the DEsim version (the only option). This should be
done for all three instances. Click commit for the version dialog.

Next, a value for the attribute ISEM should be created. Although a default value could
be used (see the attribute dialog again), associating the value on the versions allows for
different versions of this specification with different interaction semantics. Click on add for
the value element. The value dialog will appear:

I
I

w value Editor

type | |

valueExpr | |

Associated Attributes

commit cancel

Fill the type text field with the string char * and for the valueExpr field the string
“DE”. On the associated attributes list, click add option of the pop-up menu. This will show a
list of available attributes. The attribute top.ISEM should appear. Selected it. Click commit.

So far, the interface for all components have been fully described. What remains to be
done is the implementation of the behavior of the two atomic components. Edit version
DEsim of Producer. Add a new method to it. The following dialog is displayed:

12

.W.-Méth.ud d ;.1t; r attribute
name |init |v|
IanguageiC |v¢
Edit code | edit |
| commit H cancel |

A method element is composed of the desired execution method (init, compute, fixpoint
and finish), the desired host language, attributes if it is the case and the location, within the
directory of the project, where the file containing the implementation code resides. The
same file for more than one method can be used. For the DE ISEM, the fixpoint method is not
defined. The edit button is supposed to open your favorite programming editor. Currently, it is
hardwired to opening jedit (see jedit.sourceforge.net).

Three methods are necessary for component Producer. Place the following text in a file
within the ProducerConsumer project directory. It contains the implementation of the three
methods.
void init() {

scheduleMe(1.0);
}

void compute() {
if (currentTime() > 5.0) {
char *str = “maio que 5.0\n”;
sendDelayed("cl", str, strlen(str) + 1, currentTime() + 0.3);

}
else {

char *str = “menor que 5.0\n”;

sendAllDelayed("out", str, strlen(str) + 1, currentTime() + 0.35);
}

scheduleMe (currentTime() + 0.4);

}

#include <stdio.h>
void finish() {
printf ("Produtor encerrou\n");

}

13

The init method of Producer will schedule it for execution at time 1.0. This is
necessary, since some component must be active at the beginning of execution, otherwise no
event will be generated and the execution would end. Also, note that a component with no
input ports is never executed, unless it schedules itself with the scheduleMe service. The
finish method will generate a final message. The compute method will produce a string each
time it is executed. Depending on the time instant of execution, it sends a string only on
connection c/, or another string on all connections of port out. The compute method
schedules the component for execution again after 0.4 time units.

Add the init, compute and finish method elements to the DEsim version, each pointing
to the file with the above code. Click on the commit button. Now, the producer component is
finished.

The Consumer component only needs the compute and finish method. Add those
methods, pointing to the following code saved in some file:

#include <stdio.h>

void compute() {
char *data;
int i, Jj;
size t vec;

while(canReceiveAll("in", 1)) {
int size = numberOfConnections("in");
for(i = 0;i < size;i++) {
receive(nameOfConnection("in", i), &data, &vec);
printf ("Recebi mensagem %s no timestamp %f\n", data,
currentTime());

}

free(data);

}

void finish() {
printf ("Receptor encerrou\n");

}

The Consumer component will test if it can receive data from all connections
associated with port in. Until there are new events, they will be read one by one and the
message received displayed along with the value of time at the moment of execution.

Now the editing of components is complete. Before code for the specification can be
generated, it must be checked for syntactic and semantic problems. Right-click on the

ProcuderConsumer project node, and select Configure. The following dialog will appear:

14

ruleConfig

Is lihrary |False -

commit | cancel

The dialog shows the possible configurations for a project. Aside from altering its
status from a project to a library, one can create rule configurations. A rule configuration is a
list of rules that should be applied to a project. A rule configuration can contain used defined
rules and system rules. The system rules are included by checking two check boxes. User
rules are added selected individual rule artifacts from the Library Frame. Since the
ProducerConsumer project does not have any extra rule, create a rule configuration, type a
name for it, and apply the two check boxes for inclusion of system rules (syntactic and code
generation). Click the commit buttons.

Having defined a rule configuration, we can check the project artifacts with it. Since
the process of checking is done from the top hierarchy (toplevel composite component) down
to the atomic components, it is only necessary to check from the topolevel component. Right-
click on the fop component tree and select the Check item. The result should be a Check Pass
message. If there was any detectable flaw, a Check Fail message would be printed ,and the
error message would be available. It is also possible to check the others artifacts, and during
the process of development, it is advisable to do so.

Now, the last step can be done: code generation. Right-click on the ProducerConsumer
tree node and select the Generate Code item. Had your project more than one toplevel
component, the code generator would have asked to select one. Likewise if the selected
toplevel component had more than one version. Since the ProducerConsumer has only one
version and is the sole toplevel component, all is done without prompting.

There also must be a target platform for code generation. Select the Host platform for
generating code for the host system. The result is a Code generated successfully message.
Look at the directory where you placed the project. A subdirectory named fop.DEsim is
created. Go into it and you will see several .c files, plus the makefile for them. Type make,

15

and the binary main is created. If your code linked to external code, such as libraries, you
would have to manually change the makefile.

When the DE model is used as a toplevel ISEM, it can accept to command line
parameters: start time and stop time. They inform when to start and stop the simulation
respectively. Type main O 10 and the following output should be generated:

Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem menor que
Recebi mensagem maio que
Recebi mensagem maio que
Recebi mensagem maio que
Recebi mensagem maio que
Recebi mensagem maio que
Recebi mensagem maio que
Recebi mensagem maio que
Recebi mensagem maio que
Recebi mensagem maio que
Recebi mensagem maio que
Recebi mensagem maio que
Produtor encerrou

Receptor encerrou

Receptor encerrou

no timestamp 1.350000
no timestamp 1.350000
no timestamp 1.750000
no timestamp 1.750000
no timestamp 2.150000
no timestamp 2.150000
no timestamp 2.550000
no timestamp 2.550000
no timestamp 2.950000
no timestamp 2.950000
no timestamp 3.350000
no timestamp 3.350000
no timestamp 3.750000
no timestamp 3.750000
no timestamp 4.150000
no timestamp 4.150000
no timestamp 4.550000
no timestamp 4.550000
no timestamp 4.950000
no timestamp 4.950000
no timestamp 5.350000
no timestamp 5.350000
no timestamp 5.700000
no timestamp 6.100000
no timestamp 6.500000
no timestamp 6.900000
no timestamp 7.300000
no timestamp 7.700000
no timestamp 8.100000
no timestamp 8.500000
no timestamp 8.900000
no timestamp 9.300000
no timestamp 9.700000

e e e . NNUTULLULOLULIULLULILOLLULLUILULUL IO UL T UL UL LT 0
e e e e e e . .
OO OO0 OO0 O0OO0ODO0ODO0OO0OOO0OO0OOO0OO0ODOOOO OO

(S BNC B C, RO B C RO RO G R G B G B 6)
.
O OO OO OO0 OO O -

Type main 10 20 and this should be displayed:

Produtor encerrou
Receptor encerrou
Receptor encerrou

This is because the Producer is specified to schedule itself at 1.0, but with a start time
of 10 this instant have already passed. The result is that it does not execute compute, does not

generate any event, and simulation is ended based on no events on the simulation queue.

16

	1 The Producer/Consumer

